Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
J R Soc Interface ; 21(214): 20230495, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715320

RESUMEN

Monitoring urban structure and development requires high-quality data at high spatio-temporal resolution. While traditional censuses have provided foundational insights into demographic and socio-economic aspects of urban life, their pace may not always align with the pace of urban development. To complement these traditional methods, we explore the potential of analysing alternative big-data sources, such as human mobility data. However, these often noisy and unstructured big data pose new challenges. Here, we propose a method to extract meaningful explanatory variables and classifications from such data. Using movement data from Beijing, which are produced as a by-product of mobile communication, we show that meaningful features can be extracted, revealing, for example, the emergence and absorption of subcentres. This method allows the analysis of urban dynamics at a high-spatial resolution (here 500 m) and near real-time frequency, and high computational efficiency, which is especially suitable for tracing event-driven mobility changes and their impact on urban structures.


Asunto(s)
Censos , Humanos , Beijing , Remodelación Urbana , Población Urbana , Dinámica Poblacional
2.
Front Nutr ; 11: 1326092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628270

RESUMEN

Introduction: The primary treatment for non-alcoholic fatty liver disease (NAFLD) is modifying lifestyle through dietary or exercise interventions. In recent decades, it has received increasing attention. However, the lack of bibliometric analysis has posed a challenge for researchers seeking to understand the overall trends in this field. Methods: As of February 3rd, 2024, 876 articles on treating NAFLD through diet or exercise therapy from 2013 to 2023 had been retrieved. Two software tools, VOSviewer and CiteSpace, were utilized to analyze the growth of publications, countries, institutions, authors, journals, citations, and keywords. Additionally, the keywords with strong citation burstiness were identified to determine the changes and future trends of research hotspots in this field. Results: China had the highest number of articles, followed by the United States and South Korea. Yonsei University and Nutrients were the institutions and journals with the most significant contributions. Professor Younossi Zobair M, from the United States, is the most prolific author in this field. Through analyzing the keywords, three research hotspots were identified: research on the pathogenesis of NAFLD, research on the treatment modalities of NAFLD, and research on the risk factors and diagnosis methods of NAFLD. In recent years, the research emphasis in this field has changed, suggesting that future research will focus on two frontier keywords: "oxidative stress" and "aerobic capacity." Conclusion: In the past eleven years, the attention in this field was still rising, and the authors, journals, countries and so on had formed a considerable cooperative relationship. There were also many highly influential and productive researchers in this field. It is speculated that new research will continue around "aerobic exercise" and "oxidative stress" in the future.

3.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675462

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is usually associated with obesity. However, it is crucial to recognize that NAFLD can also occur in lean individuals, which is frequently overlooked. Without an approved pharmacological therapy for lean NAFLD, we aimed to investigate whether the Ganjianglingzhu (GJLZ) decoction, a representative traditional Chinese medicine (TCM), protects against lean NAFLD and explore the potential mechanism underlying these protective effects. The mouse model of lean NAFLD was established with a methionine-choline-deficient (MCD) diet in male C57BL/6 mice to be compared with the control group fed the methionine-choline-sufficient (MCS) diet. After four weeks, physiological saline, a low dose of GJLZ decoction (GL), or a high dose of GJLZ decoction (GH) was administered daily by gavage to the MCD group; the MCS group was given physiological saline by gavage. Untargeted metabolomics techniques were used to explore further the potential mechanism of the effects of GJLZ on lean NAFLD. Different doses of GJLZ decoction were able to ameliorate steatosis, inflammation, fibrosis, and oxidative stress in the liver; GL performed a better effect on lean NAFLD. In addition, 78 candidate differential metabolites were screened and identified. Combined with metabolite pathway enrichment analysis, GL was capable of regulating the glucose and lipid metabolite pathway in lean NAFLD and regulating the glycerophospholipid metabolism by altering the levels of sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0). GJLZ may protect against the development of lean NAFLD by regulating glucose and lipid metabolism, inhibiting the levels of sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0) in glycerophospholipid metabolism.

4.
Sci Rep ; 14(1): 6615, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503893

RESUMEN

Cycle slip detection and repair are crucial steps in achieving high accuracy in Global Navigation Satellite System (GNSS) data processing. The use of Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) triple frequency observations allows for more accurate detection and repair of cycle slips compared to single or dual frequency. This study presents a moving window global search method by selecting three sets of combined coefficients to construct geometry-free (GF) models to minimize the influence of the ionosphere, using a moving window to update the standard deviation of cycle slip estimation, applying the "3 σ " criterion to constrain the range, and utilizing a global search method to detect and repair triple-frequency cycle slips. Through five sets of 1 Hz GNSS data experiments, the results demonstrate the effectiveness of this method in determining the position and size of triple-frequency cycle slips while avoiding multi-value problems. The detection success rate for GPS ranges from 98.0 to 100.0%, while BDS ranges from 92.0 to 100.0%. On average, GPS achieves a detection rate of 99.2%, and BDS reaches 96.7%, which is 0.8% and 1.8% higher than the direct rounding method, respectively. Compared to existing methods, it is also effective for the vast majority of small cycle slips within 2 cycles.

5.
Mol Neurobiol ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436832

RESUMEN

Neurofibromatosis type 1 (NF1) is caused by NF1 gene mutations. Patients with NF1 often have complications with tumors, such as neurofibroma. In order to investigate the pathogenesis of human neurofibroma, a systematic comparison of protein expression levels between Schwann cell-like sNF96.2 cells, which originated from malignant peripheral nerve sheath tumors (MPNST), and normal Schwann cells was performed using 4-D label-free proteomic analysis. In addition, the expression levels and localization of dysregulated proteins were confirmed using a Gene Expression Omnibus (GEO) transcriptomic dataset, Western blot analysis, and immunofluorescence labeling. The effects of SRY-box transcription factor 9 (SOX9) in the neurofibroma and surrounding microenvironment were evaluated in vivo using a tumor transplantation model. The present study observed that SOX9 and procollagen C-endopeptidase enhancer (PCOLCE) were significantly altered. NF1 mutation promoted the nuclear translocation and transcriptional activity of SOX9 in neurofibromas. SOX9 increased collagen VI secretions by enhancing the activation of PCOLCE in neurofibroma cells. These findings might provide new perspectives on the pathophysiological significance of SOX9 in neurofibromas and elucidate a novel molecular mechanism underlying neurofibromas.

6.
J Invest Surg ; 37(1): 2308809, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38323630

RESUMEN

The human intestinal epithelium has an impressive ability to respond to insults and its homeostasis is maintained by well-regulated mechanisms under various pathophysiological conditions. Nonetheless, acute injury and inhibited regeneration of the intestinal epithelium occur commonly in critically ill surgical patients, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Effective therapies for the preservation of intestinal epithelial integrity and for the prevention of mucosal hemorrhage and gut barrier dysfunction are limited, primarily because of a poor understanding of the mechanisms underlying mucosal disruption. Noncoding RNAs (ncRNAs), which include microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and small vault RNAs (vtRNAs), modulate a wide array of biological functions and have been identified as orchestrators of intestinal epithelial homeostasis. Here, we feature the roles of many important ncRNAs in controlling intestinal mucosal growth, barrier function, and repair after injury-particularly in the context of postoperative recovery from bowel surgery. We review recent literature surrounding the relationships between lncRNAs, microRNAs, and RNA-binding proteins and how their interactions impact cell survival, proliferation, migration, and cell-to-cell interactions in the intestinal epithelium. With advancing knowledge of ncRNA biology and growing recognition of the importance of ncRNAs in maintaining the intestinal epithelial integrity, ncRNAs provide novel therapeutic targets for treatments to preserve the gut epithelium in individuals suffering from critical surgical disorders.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , MicroARNs/genética , Mucosa Intestinal
7.
Obes Rev ; 25(4): e13686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38204284

RESUMEN

BACKGROUND: Growing evidence indicates that incretin-based therapies (IBTs), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and dipeptidyl peptidase-4 inhibitors (DPP4is) are effective and safe for treating pediatric obesity patients with or without type 2 diabetes. Therefore, we aimed to perform a systematic review and meta-analysis for updating current evidence. METHODS: We searched the PubMed, the Cochrane Library, and the EMBASE database for articles published until September 15, 2023, and limited to randomized control trials. The primary outcomes were changed from baseline in weight metrics and the cardiometabolic profile. A random effects model will be used, as high heterogeneity is expected. All analyses were performed using STATA 17.0. RESULTS: Fifteen trials with a total number of 1286 participants were included in our meta-analysis. Overall, the mean difference in weight change between the IBTs group and the control group was -2.89 kg (95% confidence interval, -5.12 to -0.65, p = 0.011). Additionally, IBTs significantly reduced the HbA1c level and fasting plasma glucose by 0.37% and 6.99 mg/dl, compared with control groups. IBTs showed a little increased risk of GI side effects and hypoglycemia events, but none of the severe hypoglycemia events were occurred in IBTs group. CONCLUSIONS: Our study results have proved that GLP-1 RAs are safe, acceptable, and effective in weight reduction and sugar control for children with obesity. In addition, DPP-4is seems to have no effect on glycemic control and weight loss in childhood obesity. Further research is needed to confirm these findings, especially in younger children.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemia , Obesidad Infantil , Niño , Humanos , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemia/inducido químicamente , Hipoglucemia/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Incretinas/uso terapéutico , Obesidad Infantil/tratamiento farmacológico , Obesidad Infantil/inducido químicamente , Pérdida de Peso
8.
Animals (Basel) ; 14(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38254403

RESUMEN

To assess the Siberian crane (Grus leucogeranus)'s response to changing water levels and habitat quality at Poyang Lake, we analyzed the lake's hydrological trends over the past two decades with the Mann-Kendall and Sen slope methods. Additionally, we explored the link between the crane population size and hydrological conditions at the lake from 2011 to 2019. Meanwhile, five environmental factors, including habitat type, distance from shallow lakes, human footprint index, elevation and normalized vegetation index were selected, and the distribution patterns of suitable habitats for the Siberian crane under 10 water level gradients with intervals of about 1 m (5.3-14.2 m) were simulated by using an improved habitat suitability index model that determines the weights of evaluating factors based on the MaxEnt model. The results showed that the overall trend of the inundated area in Poyang Lake was shrinking in the last 20 years, with a significant increase in the area of exposed floodland during the early wintering period (Z = -2.26). The prolonged drought resulting from this will force vegetation succession, thereby diminishing the food resources for cranes in their natural habitat. The mean inundated area in June demonstrated a significant negative correlation with the population of Siberian cranes in natural habitats (r = -0.75, p = 0.02). Shortage of the Siberian crane-preferred Vallisneria tuber due to June flooding was the primary driver of the crane's altered foraging strategy and habitat shift. In years with relatively normal June inundation, indicating abundant Vallisneria resources, the relationship between the inundated area during the dry season and the crane population fit well, with a quadratic curve (R2 = 0.92, p = 0.02). The dry season's inundated area primarily affected the crane population and distribution pattern by influencing the availability of food resources, and both excessive and insufficient inundation areas were unfavorable for crane survival. The modeling results for habitat suitability indicated that as the water level decreased, the trend of the area of good habitat for the Siberian crane showed an inverted bell shape, peaking at a water level of 8.8 m, with optimal conditions occurring between 8 and 10 m. The combined effects of climate and human activities have made the shortage of food resources in Poyang Lake the new normal. The degradation of natural habitats has led to a decline in the quality of Siberian crane habitats, and artificial habitats can only be used as refuges to a certain extent. Thus, formulating strategies to restore natural habitats and enhance the management of artificial habitats is crucial for the conservation efforts of Siberian cranes.

9.
JCI Insight ; 9(4)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227372

RESUMEN

Circular RNAs (circRNAs) are highly expressed in the mammalian intestinal epithelium, but their functions remain largely unknown. Here, we identified the circRNA Cdr1as as a repressor of intestinal epithelial regeneration and defense. Cdr1as levels increased in mouse intestinal mucosa after colitis and septic stress, as well as in human intestinal mucosa from patients with inflammatory bowel disease and sepsis. Ablation of the Cdr1as locus from the mouse genome enhanced renewal of the intestinal mucosa, promoted injury-induced epithelial regeneration, and protected the mucosa against colitis. We found approximately 40 microRNAs, including miR-195, differentially expressed between intestinal mucosa of Cdr1as-knockout (Cdr1as-/-) versus littermate mice. Increasing the levels of Cdr1as inhibited intestinal epithelial repair after wounding in cultured cells and repressed growth of intestinal organoids cultured ex vivo, but this inhibition was abolished by miR-195 silencing. The reduction in miR-195 levels in the Cdr1as-/- intestinal epithelium was the result of reduced stability and processing of the precursor miR-195. These findings indicate that Cdr1as reduces proliferation and repair of the intestinal epithelium at least in part via interaction with miR-195 and highlight a role for induced Cdr1as in the pathogenesis of unhealed wounds and disrupted renewal of the intestinal mucosa.


Asunto(s)
Colitis , MicroARNs , Animales , Humanos , Ratones , Proliferación Celular/genética , Colitis/genética , Colitis/patología , Mucosa Intestinal/patología , Mamíferos/genética , MicroARNs/genética , Regeneración/genética , ARN Circular/genética
10.
Altern Ther Health Med ; 30(1): 18-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37773657

RESUMEN

Objective: To investigate the effect of esketamine combined with propofol on patient hemodynamics and its safety in hysteroscopy anesthesia. Methods: A total of 186 hysteroscopic patients admitted to our hospital from January 2021 to January 2022 were selected, and the patients were divided into group K and Group P according to a completely random number table, with 93 cases each. In short, all patients are uniformly numbered and adequately intermixed, according to the prescribed sampling starting point and order, the sample unit numbers were successively drawn from the random number table, until the extraction to the required sample size. Group K was given esketamine combined with propofol intravenously, and group P was given sufentanil combined with propofol intravenously. The changes in respiratory circulation [heart rate (HR), mean arterial pressure (MAP) and oxygen saturation (SpO2)] at the time of entering the operating room (T0), at the beginning of surgery (T1), 10 minutes after surgery(T2), and 10 minutes after the end of surgery (T3) were compared between the two groups, as well as the total time of surgery, the time to wake up after surgery, the amount of propofol used intraoperatively and the proportion of additional propofol were compared. The numerical rating scale (NRS) was used to assess the pain level of patients in both groups at different times after awakening and the occurrence of intraoperative and postoperative adverse reactions such as body movement, respiratory depression, bradycardia, injection site pain, nausea and vomiting, and dizziness were counted in both groups. Results: There were no significant changes in MAP, HR, and SpO2 in Group K at all moments compared with T0 (P > .05), MAP, HR and SpO2 in Group P at T1 and T2 were lower than those at T0 (P < .05). MAP, HR, and SpO2 were significantly lower in Group P at T1 and T2 moments compared with Group K, suggesting that circulatory depression was more pronounced in Group P at T1 and T2 moments (P < .05) and was not conducive to postoperative recovery. Compared with group P, the postoperative recovery time of group K was significantly shorter, and the dosage of propofol and the proportion of additional propofol were significantly lower (P < .05) which was beneficial to the health of patients. The pain level was significantly lower in Group K at 5, 15, and 30 minutes after awakening than in Group P (P < .05). The incidence of adverse reactions such as intraoperative motion, respiratory depression, bradycardia, injection site pain, and dizziness was significantly lower in group K than in group P (P < .05), and there was no significant difference in the incidence of nausea and vomiting between the two groups (P > .05), and prove that esketamine combined with propofol used for anesthesia which have high safety as well as more effective. Conclusion: The use of esketamine compounded with propofol in hysteroscopy anesthesia has less effect on the patient's circulatory and respiratory systems. This protocol can improve the postoperative analgesic effect of anesthesia in patients, reduce the amount of propofol during surgery, have fewer adverse effects and mild symptoms, is safe and effective, and can be used in clinical practice.


Asunto(s)
Anestesia , Ketamina , Propofol , Insuficiencia Respiratoria , Femenino , Embarazo , Humanos , Propofol/efectos adversos , Histeroscopía/efectos adversos , Bradicardia , Mareo , Hemodinámica , Dolor , Vómitos , Náusea
11.
Small ; 20(8): e2306100, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817367

RESUMEN

Herein, the construction of a heterostructured 1D/3D CoN-Co2 N@NF (nickel foam) electrode used for thermodynamically favorable hydrazine oxidation reaction (HzOR), as an alternative to sluggish anodic oxygen evolution reaction (OER) in water splitting for hydrogen production, is reported. The electrode exhibits remarkable catalytic activities, with an onset potential of -0.11 V in HzOR and -71 mV for a current density of 10 mA cm-2 in hydrogen evolution reaction (HER). Consequently, an extraordinary low cell voltage of 53 mV is required to achieve 10 mA cm-2 for overall hydrazine splitting in a two-electrode system, demonstrating significant energy-saving advantages over conventional water splitting. The HzOR proceeds through the 4e- reaction pathway to release N2 while the 1e- pathway to emit NH3 is uncompetitive, as evidenced by differential electrochemical mass spectrometric measurements. The X-ray absorption spectroscopy, in situ Raman spectroscopy, and theoretical calculations identify cobalt nitrides rather than corresponding oxides/(oxy)hydroxides as catalytic species for HzOR and illustrate advantages of heterostructured CoN-Co2 N in optimizing adsorption energies of intermediates/reagents and promoting catalytic activities toward both HzOR and HER. The CoN-Co2 N@NF is also an excellent supercapacitive material, exhibiting an increased specific capacity (938 F g-1 at 1 A g-1 ) with excellent cycling stability (95.8%, 5000 cycles).

12.
PLoS One ; 18(12): e0289172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38127940

RESUMEN

BACKGROUND: Olfactory dysfunction is a common manifestation in COVID-19 patients and can significantly impact their quality of life. Corticosteroids have been proposed as a potential treatment, but their efficacy remains controversial. This systematic review and meta-analysis aims to comprehensively analyze the efficacy of corticosteroid therapy for treating COVID-19-related olfactory dysfunction. METHODS: A literature search was conducted in PubMed, Cochrane Library, and Embase databases up to March 1, 2023. Randomized controlled trials investigating the effects of corticosteroids on olfactory dysfunction in patients with COVID-19 were included. The primary outcome was the olfactory score at the end of follow-up, and the secondary outcomes were the duration and the rate of recovery from olfactory dysfunction. RESULTS: Seven randomized controlled trials with 999 participants were included in the meta-analysis. Compared with the control group, corticosteroid treatment resulted in a statistically significant improvement in olfactory score with a standardized mean difference of 0.55 (95% CI: 0.15 to 0.95). Topical corticosteroids were found to be effective, but systemic corticosteroids were not. In addition, longer durations and higher dosages of corticosteroids treatment may also be associated with significant improvements in olfactory scores. No significant effect was observed on the duration or recovery rate of olfactory dysfunction. CONCLUSIONS: Our findings suggest that topical corticosteroid treatment is a viable option for improving COVID-19-related olfactory dysfunction, but further research is needed to investigate optimal treatment protocols and safety profiles.


Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Calidad de Vida , COVID-19/complicaciones , Ensayos Clínicos Controlados Aleatorios como Asunto , Corticoesteroides/uso terapéutico , Glucocorticoides , Trastornos del Olfato/tratamiento farmacológico , Trastornos del Olfato/etiología
13.
Anim Biosci ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37946414

RESUMEN

Objective: Jining Grey Goat is a local Chinese goat breed that is well known for its high fertility and excellent meat quality but shows low meat production performance. Numerous studies have focused on revealing the genetic mechanism of its high fertility, but its highlighting meat quality and muscle growth mechanism still need to be studied. Methods: In this research, an integrative analysis of the genomics and transcriptomics of Jining Grey goats compared with Boer goats was performed to identify candidate genes and pathways related to the mechanisms of meat quality and muscle development. Results: Our results overlap among five genes (ABHD2, FN1, PGM2L1, PRKAG3, RAVER2) and detected a set of candidate genes associated with fatty acid metabolism (PRKAG3, HADHB, FASN, ACADM), amino acid metabolism (KMT2C, PLOD3, NSD2, SETDB1, STT3B, MAN1A2, BCKDHB, NAT8L, P4HA3) and muscle development (MSTN, PPARGC1A, ANKRD2). Several pathways have also been detected, such as the FoxO signaling pathway and Apelin signaling pathway that play roles in lipid metabolism, lysine degradation, N-glycan biosynthesis, valine, leucine and isoleucine degradation that involving with amino acid metabolism. Conclusion: The comparative genomic and transcriptomic analysis of Jining Grey Goat and Boer Goat revealed the mechanisms underlying the meat quality and meat productive performance of goats. These results provide valuable information for future breeding in goats.

14.
Front Pharmacol ; 14: 1286718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954843

RESUMEN

Cardiovascular diseases (CVDs), encompassing ischaemic heart disease, cardiomyopathy, and heart failure, among others, are the most prevalent complications of diabetes and the leading cause of mortality in patients with diabetes. Cell death modalities, including apoptosis, necroptosis, and pyroptosis, have been demonstrated to be involved in the pathogenesis of CVDs. As research progresses, accumulating evidence also suggests the involvement of ferroptosis, a novel form of cell death, in the pathogenesis of CVDs. Ferroptosis, characterised by iron-dependent lipid peroxidation, which culminates in membrane rupture, may present new therapeutic targets for diabetes-related cardiovascular complications. Current treatments for CVDs, such as antihypertensive, anticoagulant, lipid-lowering, and plaque-stabilising drugs, may cause severe side effects with long-term use. Traditional Chinese medicine, with its broad range of activities and minimal side effects, is widely used in China. Numerous studies have shown that active components of Chinese medicine, such as alkaloids, polyphenols, and saponins, can prevent CVDs by regulating ferroptosis. This review summarises the recent findings on the regulatory mechanisms of active components of Chinese medicine against ferroptosis in CVDs, aiming to provide new directions and a scientific basis for targeting ferroptosis for the prevention and treatment of diabetic CVDs.

15.
Proc Natl Acad Sci U S A ; 120(46): e2215285120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37931110

RESUMEN

The insulin-like growth factor 2 (IGF2) plays critical roles in cell proliferation, migration, differentiation, and survival. Despite its importance, the molecular mechanisms mediating the trafficking of IGF2 along the secretory pathway remain unclear. Here, we utilized a Retention Using Selective Hook system to analyze molecular mechanisms that regulate the secretion of IGF2. We found that a type I transmembrane protein, TMED10, is essential for the secretion of IGF2 and for differentiation of mouse myoblast C2C12 cells. Further analyses indicate that the residues 112-140 in IGF2 are important for the secretion of IGF2 and these residues directly interact with the GOLD domain of TMED10. We then reconstituted the release of IGF2 into COPII vesicles. This assay suggests that TMED10 mediates the packaging of IGF2 into COPII vesicles to be efficiently delivered to the Golgi. Moreover, TMED10 also mediates ER export of TGN-localized cargo receptor, sortilin, which subsequently mediates TGN export of IGF2. These analyses indicate that TMED10 is critical for IGF2 secretion by directly regulating ER export and indirectly regulating TGN export of IGF2, providing insights into trafficking of IGF2 for myoblast differentiation.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Mioblastos , Vías Secretoras , Proteínas de Transporte Vesicular , Animales , Ratones , Diferenciación Celular , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo
16.
Front Biosci (Landmark Ed) ; 28(10): 262, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37919092

RESUMEN

The mammalian intestinal epithelium is a rapidly self-renewing tissue in the body and its homeostasis is tightly controlled by numerous factors at multiple levels. The RNA-binding protein HuR (human antigen R) is intimately involved in many aspects of gut mucosal pathobiology and plays an important role in maintaining integrity of the intestinal epithelium by regulating stability and translation of target mRNAs. Nonetheless, deregulation of HuR expression and altered binding affinity of HuR for target transcripts occur commonly in various gut mucosal disorders. In this review, we highlight the essential role of HuR in the intestinal epithelium homeostasis and discuss recent results that interactions between HuR and noncoding RNAs (ncRNAs), including circular RNAs, long ncRNAs, small vault RNAs, and microRNAs, influence gut mucosal regeneration and regulate barrier function in various pathophysiological conditions. These exciting discoveries advance our knowledge of HuR biological function in the gut mucosa and also create a fundamental basis for developing novel therapies to protect intestinal epithelial integrity in critically ill patients.


Asunto(s)
Mucosa Intestinal , ARN Largo no Codificante , Animales , Humanos , Mucosa Intestinal/metabolismo , Epitelio/metabolismo , ARN Largo no Codificante/metabolismo , Homeostasis , Mamíferos/metabolismo
17.
Anal Chem ; 95(48): 17750-17758, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971943

RESUMEN

A new type of carbon dot (CD)-functionalized solution-gated graphene transistor (SGGT) sensor was designed and fabricated for the highly sensitive and highly selective detection of glutathione (GSH). The CDs were synthesized via a one-step hydrothermal method using DL-thioctic acid and triethylenetetramine (TETA) as sources of S, N, and C. The CDs have abundant amino and carboxyl groups and were used to modify the surface of the gate electrode of SGGT as probes for detecting GSH. Remarkably, the CDs-SGGT sensor exhibited excellent selectivity and ultrahigh sensitivity to GSH, with an ultralow limit of detection (LOD) of up to 10-19 M. To the best of our knowledge, the sensor outperforms previously reported systems. Moreover, the CDs-SGGT sensor shows rapid detection and good stability. More importantly, the detection of GSH in artificial serum samples was successfully demonstrated.


Asunto(s)
Grafito , Puntos Cuánticos , Carbono , Límite de Detección , Glutatión
18.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G518-G527, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788332

RESUMEN

Gut barrier dysfunction occurs commonly in patients with critical disorders, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Connexin 43 (Cx43) acts as a gap junction protein and is crucial for intercellular communication and the diffusion of nutrients. The levels of cellular Cx43 are tightly regulated by multiple factors, including polyamines, but the exact mechanism underlying the control of Cx43 expression remains largely unknown. The RNA-binding protein HuR regulates the stability and translation of target mRNAs and is involved in many aspects of intestinal epithelial pathobiology. Here we show that HuR directly bound to Cx43 mRNA via its 3'-untranslated region in intestinal epithelial cells (IECs) and this interaction enhanced Cx43 expression by stabilizing Cx43 mRNA. Depletion of cellular polyamines inhibited the [HuR/Cx43 mRNA] complex and decreased the level of Cx43 protein by destabilizing its mRNA, but these changes were prevented by ectopic overexpression of HuR. Polyamine depletion caused intestinal epithelial barrier dysfunction, which was reversed by ectopic Cx43 overexpression. Moreover, overexpression of checkpoint kinase 2 in polyamine-deficient cells increased the [HuR/Cx43 mRNA] complex, elevated Cx43 levels, and promoted barrier function. These findings indicate that Cx43 mRNA is a novel target of HuR in IECs and that polyamines regulate Cx43 mRNA stability via HuR, thus playing a critical role in the maintenance of intestinal epithelial barrier function.NEW & NOTEWORTHY The current study shows that polyamines stabilize the Cx43 mRNA via HuR, thus enhancing the function of the Cx43-mediated gap junction. These findings suggest that induced Cx43 by HuR plays a critical role in the process by which polyamines regulate intestinal epithelial barrier.


Asunto(s)
Conexina 43 , Proteína 1 Similar a ELAV , Poliaminas , ARN Mensajero , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Mucosa Intestinal/metabolismo , Poliaminas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN
19.
J Opt Soc Am A Opt Image Sci Vis ; 40(10): 1908-1917, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855546

RESUMEN

This paper proposes a staircase joint optimization scheme (SJOS) with alternating diagonal interference cancellation and power allocation in an underwater wireless optical communication system based on nonorthogonal multiple access (UWOC-NOMA) with the multi-user paired. The scheme employs the directional iteration to alternatively optimize the subproblems of the interference cancellation and the power allocation. Furthermore, a one-way sorting algorithm based on the alternating diagonal interference cancellation and power allocation subalgorithm based on the conjugate gradient method are presented to solve the two subproblems, respectively. Simulation results show that the algorithm effectively reduces the average outage probability of the system with fast convergence, even with an increase in the number of paired users.

20.
Nanoscale ; 15(43): 17525-17533, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37869872

RESUMEN

Seawater electrolysis, taking advantage of the huge seawater resource, holds great promise for sustainable hydrogen generation. Compared to conventional water electrolysis, seawater electrolysis is more challenging because of the more complex and corrosive electrolyte and competitive side reactions, which necessitates the development of highly efficient and stable electrocatalysts. In this study, a self-supporting, highly porous NiFe-PBA (Prussian-blue-analogue) electrocatalyst with a hierarchically hollow nanostructure is introduced, which exhibits impressive catalytic performance towards the oxygen evolution in alkaline seawater electrolytes. In NiFe-PBA, the synergistic interaction between Ni and Fe improves intrinsic conductivity for efficient electron transfer, enhances chemical stability in seawater, and boosts overall electrocatalytic activity. The direct use of self-supporting NiFe-PBA as an electrocatalyst avoids the energy-intensive and tedious pyrolysis procedure during the preparation process while making use of the tailored morphological, structural, and compositional benefits of PBA-based materials. By combining the NiFe-PBA catalyst with the NiMoN cathode, the constructed two-electrode electrolyzer achieved a high current density of 500 mA cm-2 at a low cell voltage of 1.782 V for overall electrolysis of alkaline seawater, demonstrating excellent durability for 100 hours. Our findings have important implications for the hydrogen economy and sustainable development through the development of robust and efficient PBA-based electrocatalysts for seawater electrolysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...